Does position matter? Attaching NRCs to quantificational heads

Claudia Poschmann

Goethe Universtität Frankfurt a.M.

December 19, 2013

NRC and Discourse Anaphora

- (1) a. Paul invited **Nick**, who lives next door.
 - b. Paul invited **Nick**. He lives next door.
- (2) a. Paul invited **the/a boy**, who lives next door.
 - b. Paul invited **the/a boy**. He lives next door.
- (3) a. Paul invited **every boy**, *who lives next door.
 - b. Paul invited **every boy**. *He lives next door.
- (4) a. Paul invited **most boys**, who live next door.
 - b. Paul invited **most boys**. They live next door.

Does position matter?

Del Gobbo (2003):

- (5) a. Paul invited **most students**, who came very late.
 - b. *Most students, who arrived late, came to the party.
- (6) a. Paul invited **most students**. They came very late.
 - b. **Most students** came to the party. They arrived late.

Hypothesis I: Position does affect the **grammaticality** of NRCs with plural quantificational heads. In sentence-internal (subject) position, NRCs with quantificational head are ungrammatical.

Does position matter?

Nouwen (2007):

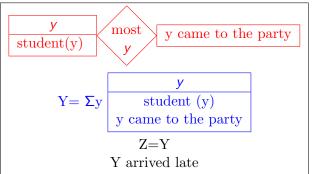
- (7) Paul interviewed less than half of the climbers, who by the way were all French. (object/final)
 - a. **Restrictor-Set:** All Climbers were French.
 - Intersection-Set: All interviewed climbers were French.
- (8) Less than half of the climbers, who by the way were all French, reached the summit. (subject/internal)
 - a. **Restrictor-Set:** All climbers were French.
 - b. (Intersection-Set All climbers that reached the summit were French.)

Hypothesis II: Position does affect the **interpretation** of NRCs with plural quantificational heads.

Does position matter?

What's wrong with Del Gobbo's example?

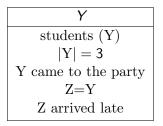
- (9) #Most students, who arrived very late, came to the party.
 - Matrix-Clause:
 Most (but not all) students came to the party.
 - b. NRC (Restrictor Set-Reading):
 All students (in the context) arrived late at the party.


Why could position matter?

Possible Explanation:

In case of sentence internal NRCs the Intersection-Set is not yet specified and hence not yet available for anaphoric reference.

DRT (Kamp & Reyle 1993): Strong Quantifiers


(10) Most of the students came to the party. They arrived very late.

Intersection-Set availbale by "abstraction" only after the quantification

DRT (Kamp & Reyle 1993): Weak Quantifiers

(11) Three students came to the party. They arrived very late.

- No Duplex-Conditions, but group-Denoting (plural) Discourse Referent
- Only Intersection-Set Reading available
- No Restrictor-Set Reading available

Experiments in German

▶ **Method:** Online-questionnaire, 120 participants

▶ Test 1: Acceptability

Are NRCs with plural quantificational heads acceptable in sentence-internal (subject) position?

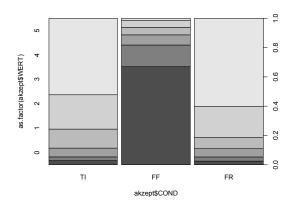
Del Gobbo (2003): No. **Nouwen (2007):** Yes.

► Test 2: Interpretation

Can NRCs with plural quantificational head get an Intersection-Set-Reading in sentence-internal (subject) position?

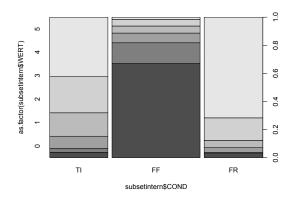
Nouwen (2007): No. Kamp & Reyle (1993): No.

Test 1: Acceptability


- (12) Test item (NRCs with plural quant. head)
 Die meisten Mütter, die ja nur das Beste für ihr Kind
 wollen, kaufen Bio-Produkte. (Most mothers, who PART
 only want the best for their child, buy organic products.)
- (13) False Filler (NRCs with singular quant. head)
 Kein Kind, das übrigens auf der Rutsche sitzt, trägt eine blaue Jacke. (No child, which is PART sitting on the slide, is wearing a blue jacket.)
- (14) Correct Filler (RRCs with singular quant. head)

 Jeder Student, der am Tutorium teilgenommen hat, hat
 die Prüfung bestanden. (Every student that participated
 at the tutorial passed the exam.)

Test 1: Acceptability


- 3 Test-Items (NRCs with plural quantificational heads)
- ▶ 3 False Fillers (NRCs with singular quantificational heads)
- 3 Correct Fillers (RRCs with singular quantificational heads)
- ▶ In each condition, 2 RCs in intern position and 1 in final position
- Acceptability Judgement on a scale from 0 (totally unacceptable) to 5 (fully acceptable)

Test 1: Overall Results (scale from 0 to 5)

- ► Highly significant difference between TI and FF (t=-9.946)
- No significant difference between TI and CF (t=0.432)

Test 1: Results for Internal Position of the RC

- ► Highly significant difference between TI and FF (t=-12.11)
- Highly significant difference between TI and CF (t=4.37)

Test 2: Interpretation

Das Lego-Set City umfasst über 300 Steine **verschiedener Farben und Grössen**, unter anderem für eine Poststelle und eine Polizeistation. Die meisten Steine, **die natürlich alle rot sind**, gehören zu einem Feuerwehrhaus.

The Lego-Set "City" contains more than 300 bricks of **different** color and size, for example for a post office and a police station. Most bricks, which of course are **all red**, belong to a fire station.

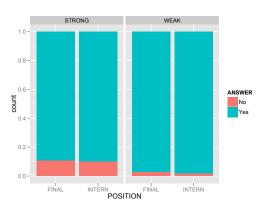
Question: Ist das möglich? (*Is this possible*?)
Answer: Ja. Das ist möglich. (*Yes. This is possible*) / Nein. Das ist völlig ausgeschlossen. (*No. This is completely ruled out.*)

Test 2: Design

- ▶ 12 Test-Items in 4 Conditions
- Attachment: only subject-attachment
- ► Factors:

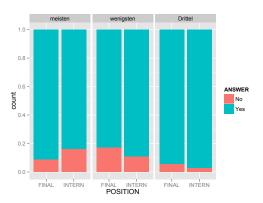
Position (internal / final) Strength (weak/strong)

Quantifiers:


Strong	Weak	
die meisten (most)	mehr als (more than)	
die wenigsten (few)	weniger als (less than)	
ein Drittel (a third)	genau (exactly)	

- ► Latin Square Design
- ▶ 16 Fillers (8 Correct / 8 False)

Test 2: Conditions


- (15) **Die meisten Steine**, die natürlich alle rot sind, gehören zu einem Feuerwehrhaus. (*Most bricks, which PART are all red, belong to a fire station.*) **(strong/intern)**
- (16) Zu einem Feuerwehrhaus gehören **die meisten Steine**, die natürlich alle rot sind. (*Most bricks, which PART are all red, belong to a fire station*)) (strong/final)
- (17) **Mehr als 100 Steine**, die natürlich alle rot sind, gehören zu einem Feuerwehrhaus.(*More than 100 bricks, which PART are all red, belong to a fire station.*) (weak/intern)
- (18) Zu einem Feuerwehrhaus gehören **mehr als 100 Steine**, die natürlich alle rot sind.(*More than 100 bricks, which PART are all red, belong to a fire station.*) (weak/final)

Test 2: Results / Strength ∼ Position

- Significant effect of the Quantifier's Strength (p < 0.001)
- ▶ No effect of position (p=0.979)
- No interaction of Strength and Position (p=0.887)
- High acceptance rate even with strong quantifier (0.9)

Test 2: Results / Strong Quantifiers ∼ Position

- ▶ Difference between drittel and meisten (p=0.00304)
- ▶ Difference between *meisten* and *wenigsten*? (p=0.196)
- ► Acceptance rate with *meisten* in intern position (0.86)

Main Findings:

- ▶ NRCs attached to plural quantified heads are grammatical at sentence-internal (subject) position.
- NRCs attached to plural quantified heads can get Intersection-Set-Readings with strong quantificational head in sentence-internal (subject) position.
- The latter finding comes unexpected for standard theories of plural anaphora (DRT).

Possible explanations:

- ► Discourse-level repair strategy (Nouwen 2007)
 But: We would expect lower acceptance rates.
- High Attachment of the NRC But: We lose the intuitions behind Del Gobbo's example.
- Intersection-Set Reading is not missing but only less salient in sentence-internal position.
 But: We need a more fine-grained approach of Plural

Anaphora

But: We need a more fine-grained approach of Plura

Alternative Approaches

More fine-grained approaches:

- ▶ Nouwen (2003)
- ▶ Brasoveanu (2010)

Both:

- Plural Information States (van den Berg 1996)
- Quantifiers introduce two separate referents, one for the Restrictor-Set and one for the Intersection-Set.

A Difference:

- ► The account of Brasoveanu (2010) is additionally couched into a C(ompositional) DRT Framework (Muskens 1996).
- Quantification over discourse-referents

Brasoveanu 2010

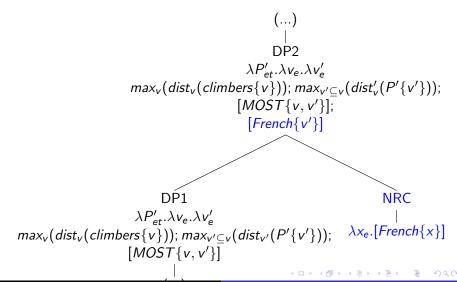
- (19) Quantificational Determiner: $\lambda P_{et}.\lambda P'_{et}.max^{u}(dist_{u}(P\{u\}))); max^{u'\subseteq u}(dist_{u'}(P'\{u'\})); [DET\{u,u'\}]$
- (20) max-Operator: $max^u(D) = \lambda I_{st}.\lambda J_{st}.$ ([u]; D)IJ $\land \forall K_{st}(([u]; D)IK \rightarrow uK_{u\neq\#} \subseteq uJ_{u\neq\#})$
- (21) dist-Operator: $dist_u(D) = \lambda I_{st} . \lambda J_{st}. \ uI = uJ \land \forall \ x_e \in ul(DI_{u \neq x} J_{u \neq x})$
- (22) Structured Inclusion: $u' \subseteq u = \lambda I_{st}$. ($u' \subseteq u$) $1 \land \forall i_s \in I_{st}$ ($ui \in u'I_{u' \neq \#} \rightarrow ui = u'i$)

```
(23) Quantificational Determiner (Brasoveanu 2010): \lambda P_{et}.\lambda P'_{et}.max^{u}(dist_{u}(P\{u\})); max^{u'\subseteq u}(dist_{u'}(P'\{u'\})); [DET\{u,u'\}]
```

(24) Quantificational Determiner (Modified): $\lambda P_{et}.\lambda P'_{et}.[u];[u'];[DET \{u,u'\}]; \max_{u}(dist_{u}(P\{u\})); \\ \max_{u'\subseteq u}(dist_{u'}(P'\{u'\}))$

(25) sentence-internal attachment
 Most climbers, who were all French, reached the summit.
 [u]; [u']; [MOST{u, u'}]; max_u(dist_u(climbers{u}));
 [French{u'}];
 max_{u'⊆u}(dist_{u'}(reached_the_summit{u'}))

(26) sentence-final attachment
 Paul interviewed most climbers, who were all French.
 [u]; [u']; [MOST{u, u'}]; max_u(dist_u(climbers{u}));
 max_{u'⊆u}(dist_{u'}(interview{Paul, u'}));
 [French{u'}].


Compositionality-Problem:

- ▶ Discourse referents are "invisible" in the syntactic tree.
- Consequence: We have to split-up the syntactic tree.

Proposal: Four-Place-Quantifier (2 predicative and 2 referential arguments)

(27) Modified Definition of the Determiner: $\lambda P_{et}.\lambda P'_{et}.\lambda v_e.\lambda v'_e.[DET\{v,v'\}];$ $max_v(dist_v(P\{v\})); max_{v'\subseteq v}(dist_{v'}(P'\{v'\}))$

NRC Attachment

D-Ref Introduction

```
\lambda P'_{et}.[u]; [u'];
max_u(dist_u(climbers\{u\})); max_{u'\subset u}(dist'_u(reach\_the\_summit\{u'\}));
                                   [MOST\{v, v'\}];
                                     [French{u'}]
                                    \lambda P'_{et}.\lambda v_e.\lambda v'_e
          max_v(dist_v(climbers\{v\})); max_{v' \subset v}(dist_{v'}(P'\{v'\}));
                                   [MOST\{v, v'\}]:
                                     [French\{v'\}]
```

Conclusion:

- Contra del Gobbo (2003): NRCs with plural quantificational heads are acceptable in sentence-internal position.
- Contra Nouwen (2007): NRCs with strong quantificational heads can get an intersection-set reading in sentence-internal position.
- ▶ In sentence-internal position of the NRC the intersection-set reading is not missing but only less salient.
- We can account for these findings by minor modifications of Brasoveanu (2010).

The End

Thank you!

(28) Modified Definition of the Determiner: $\lambda P.\lambda P'.\lambda x.\lambda x'.[DETx,x'];$ $max_x(dist_x(P(x))); max_{x'\subseteq x}(dist_{x'}(P'(x')))$

(29) NRC Attachment Rule:

If C is a branching node consisting of two sister nodes A and B, A with the translation α being of type (et(e(e(t)))) and B with the translation β of type (et), C has the following translation γ : $\lambda P'.\lambda x.\lambda x'.\alpha(P')(x)(x')$; $\beta(v)$

(30) Introduction of Discourse-Referents:

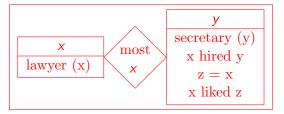
If A is a node of type ((et (e (e t)))) with the translation α , A can replaced by a node B of type ((et) t) with the following translation: $\lambda P'.[u]; [u']; \alpha(P')(u)(u')$

Brasoveanu (2010)

▶ Plural information states (van den Berg 1996)

1	u	u'	()
i_1	α (i.e., ui_1)	β (i.e., ui_1)	
<i>i</i> ₂	α (i.e., ui_2)	β (i.e., ui_2)	
i ₃	α (i.e., ui_1)	$\beta(i.e., ui_3)$	

- ► Columns: Quantifier domains
- Rows: Quantifier dependencies
- (31) Every^u student who wrote $a^{u'}$ paper reached $it_{u'}$ in for the conference.


Brasoveanu (2010)

- Plural Information States (van den Berg)
- ► C(ompositional) DRT (Muskens 1996)
- ► Basic types: e (individuals), t (truth-values), s (assignments)
- ► DRS: $[newdrefs|conditions] = \lambda I_{st} . \lambda J_{st} . I[newdrefs] J \wedge I[conditions] J$
- ► New Dref:

$$[\mathbf{u}] = \lambda I_{st}.\lambda J_{st}.\forall i_s \in I(\exists j_s \in J(i[u]j)) \land \forall j_s \in J(\exists i_s \in I(i[u]j))$$

DRT (Kamp & Reyle 1993): Restrictive RCs

- (32) Most lawyers hired a secretary they liked. (RRC)
 - a. Matrix collective / RC collective
 - b. Matrix distributive / RC distributive
 - c. Matrix distributive / RC collective

- ▶ Intersection-Set not yet available
- ► Circularity-Problem with Intersection-Set-Reference within the quantifier's scope

Secretaries Brasoveanu 2010

The secretary-example with RRC

(33) Most lawyers hired a secretary they liked.

[u]; $max_u(dist_u(lawyer(u)))$; [u']; $max_{u'\subseteq u}(dist_{u'}([v]|secretary(v), like(u', v), hire(u', v)))$;

[MOSTu, u']